
1

FSO 2013: class of
21st of October

Communication between processes
•  Message passing. Client server-interaction
•  Interprocess communication using sockets
•  Mysocks socket library

Cooperating Processes

  Independent process cannot affect or be
affected by the execution of another process

 Cooperating process can affect or be affected
by the execution of another process

 Advantages of process cooperation
  Information sharing
 Computation speed-up
 Modularity
 Convenience

2

Cooperating Processes must

 Exchange information: processes transfer
information between them. An example is the
producer consumer problem

 Synchronize actions: action B in process P2
must happen only after action A in process P1.
Example: mutual exclusion

Interprocess Communication (IPC)

 Mechanism for processes to communicate and
to synchronize their actions

  Information exchange between processes
 Using shared memory Example: Pthreads

reading and writing shared variables
 Without shared memory

• Example 1: a UNIX process created by a fork()
does not share memory with other processes in the
system

• Example 2: a process running in machine H1 and
another process running in machine H2

3

IPC with shared memory

Common data

Private thread stacks
+
Common heap

Code

OS

Process
image loaded
in RAM

Threads

•  Threads communicating
reading and writing
shared variables

•  No OS help is needed
(fast)

•  Reading and writing
common variables need
care (dangerous)

IPC without shared memory

  IPC facility provides two operations:
  send(message) – a sequence of bytes leaves the address

space of the sending process
  receive(message) – the bytes received are copied to the

address space of the process that performs the operation

data

Private thread stacks
+
Common heap

Code

Thread

message

Send(message)

data

Private thread stacks
+
Common heap

Code

Thread

message

Receive(message)

4

How to specify the receiver
  Direct communication – the receiver of the message is

specified by its process id
• Processes must name each other explicitly:

 send (P, message) – send a message to process P
  receive(Q, message) – receive a message from

process Q
  Indirect communication – Messages are directed and

received from external entities (mailboxes or ports)
• Each mailbox / port has a unique id. Operations are:

 send(A, message) – send a message to mailbox /port
A

  receive(A, message) – receive a message from
mailbox / port A

IPC without shared memory
needs OS support

  In the same machine, the OS must make the byte transfer as
a process cannot access another process memory

OS

Sending process
message

Receiving process
Buffer to receive
the message

send system call(message)

receive system call (buffer)

Message stored in
OS memory

5

IPC without shared memory

  IPC facility provides two operations:
  send(message) – a sequence of bytes leaves the address

space of the sending process
  receive(message) – the bytes received are copied to the

address space of the process that performs the operation

data

Private thread stacks
+
Common heap

Code

Thread

message

Send(message)

data

Private thread stacks
+
Common heap

Code

Thread

message

Receive(message)

Extending IPC to two processes
in distinct machines

  OS can deliver bytes to the network and receive bytes from the
network

  Sender must specify: the address of the machine where to
deliver the bytes, and a port / mailbox in the remote machine

data

Code

message

Send(message)

data

Code

message

Receive(message)

Network

OS Code

Buffer in OS space Buffer in OS space

6

Synchronization

 Message passing may be either blocking or
non-blocking

  Blocking is considered synchronous
  Blocking is most of the times associated with

receive has the receiver blocks until a message
is available

  Non-blocking is considered asynchronous
  Sending is most of times Non-blocking the

sender copies the message to the OS and
continues

12

Client-server interaction[1]

In most cases, applications that involve more
one process in different machines, interact
according to the client server paradigm below

Client Program Server Program

request

reply

A server can
handle several
clients simulta-
neously

For example,
a Browser

For example a
Web Server

7

13

Client-Server interaction [2]

The server manages a resource and supplies a service to the clients that
can demand operations over the resource
 Web Server: manages a set of files contain

  (1) data: the service offered is the sending of the file contents
  (2) programs: that the server executes on the behalf of a client

 FTP Servers and emails work the same way

Client
Process

Server
Process

1. Client sends request

3. Server sends a reply

Resource

2. Server
processes the request 4. Client deals

with the reply

14

Client-server interaction[3]

Clients and servers are processes and not computers: if the
OS supports multi-programming

  In the same machine several servers and clients can be executing
  Client and server can execute in distinct machines or in the same

When building applications that include processes in
separate machines, usually Internet Protocols are used: the
layer in the Internet Protocols that support communication between processes
residing in distinct machines is the Transport Layer

Operating systems have system calls that allow a process to
use the transport layer of the Internet: the devices that allow
access to these protocols are sockets.

8

15 15

Client-server interaction using
Internet Protocols

Internet

Machine where the client executes Machine where the server executes

Client process

System calls related
to sockets

Server process

OS Internet Protocols
support

Network hardware
control

System calls related
to sockets

Internet Protocols
support

Network hardware
control

OS

System calls System calls

16

TCP/IP protocol stack [1]

16

Data link + physical levels
Eg Ethernet

Transport level

Network level
IP (Internet Protocol)

Application level

Defines how to name the machines
and how to route a packet from the
sender machine to the destination
machine

UDP (Unreliable Datagram Protocol)
TCP (Transmission Contol Protocol)
Channel oriented

HTTP, FTP, SMTP, …
Client/server

9

17

Machine (node) address

 Unique in the Internet. Number with 32 bits;

  there is also a human-friendly name that is a
string. Example asc.di.fct.unl.pt

 17 17

IP address
stored in 4
bytes

18

TCP and UDP ports

  To identify the addressee of a message one needs
more than the IP address

  The Internet transport protocols support Port
Addresses or port numbers
  The port number is used to identify the service that is

offered by a server process
  If the IP address identifies a house (machine or host) the

port identifies a floor where stays someone that offers a
service

  Example: port 80 is the default port for web servers

18

10

19

Standard ports and user ports

19

Application protocol Port Use

ftp 20 File transfer
ssh 22 Secure remote login
smtp 25 Email sending and receiveng
http 80 Web
pop3 110 Alternative email protocol

User ports: Ports between 1024 and 65535 can be
freely utilized by user programs

Use of Ports to identify the
service required

Web Server"
(port 80)"

Client 1´s host"

Server host 128.2.194.242"

Echo server"
(port 7)"

Request sent to"
128.2.194.242:80"
(i.e., Web server)"

Web Server"
(port 80)"

Echo server"
(port 7)"

Request sent to"
128.2.194.242:7"

(i.e., o servidor de eco)"

OS"

OS"

Client 1"

Client 2"

Client 2ʼ host"

20

11

21

Connection [1]

  Clients and servers that use the TCP protocol
communicate through streams . These streams have
two ends and bytes flow trough them in both
directions. Processes use streams through input/
output channels (like files or devices). After
establishing the connection we have:
  A Point-to-Point link between two processes (a client and

a server for example) one at each end
  Data flowing in both directions (client->server and server->

client) Full-Duplex
  The flow is reliable because the sequence of bytes sent by

the emitter is received by the addresse without byte losses
and order exchange

21

22

Connection[2]

22

Cliente Servidor
Porta 80

Server IP address:
208.216.181.15

IP client address:
193.136.122.33

Server port: 80

Client port: 60000

12

23

TCP Sockets

  It´s a virtual device allowing the access to
one of the endpoints of a TCP connection

 There is a set of system call that allow a
process to build and destroy connections,
and send and receive bytes through a
connection

  Introduced in BSD UNIX (1982), all the
modern operating systems support TCP
sockets

24

Client /Server with Sockets

Server at host H

Creates a socket associated
to port P

Client

Creates a Socket S
And asks for a connection to
Host H, port P

Reads from socket S the
reply sent by server

Using channel S, writes the bytes
with request in the socket

Closes socket S

Using channel SC read from
socket the request

Closes socket SC

Using channel SC write the reply
In the socket

Waits for connection requests at port
P. When a request is received a new
socket SC is returned

13

25

mysocks Socket Library

Operation Input parameters Return value

serverSocket
(only server)

Server Port > 0 I/O channel associated to the
socket; -1 in case of error

acceptServerSocket
(only server)

Channel returned by the ServerSocket
operation se

> 0 I/O channel that allows reading
and writing bytes from/to client

connectSocket
(only client)

String with server´s host name, integer
with server´s port

> 0 I/O channel that allows reading
and writing from/to server

writeSocket
(client and server)

I/O channel, address of bytes to write,
number of bytes to write

> 0, number of bytes sent
< 0 erro

readSocket
(client and server)

I/O channel, address of buffer to
receive bytes, number of bytes to write

 > 0 number of received bytes
< 0, error
== 0, peer closed write channel

closeSocket (client) I/O channel associated to socket

0 OK; -1 error

26

Client/Server with mySocks
Server at host H

S = serverSocket(port) Client

S = connectSocket(H, port)

readSocket(S, BufRep,
 MaxRep)

writeSocket (S, BufReq,
Nreq)

closeSocket(S)

Np = readSocket(SC, BufP, MAX)

CloseSocket(Sc)

Nw = writeSocket(SC, BufR, NR)

SC = acceptServerSocket(S)

Connection
establishment

Connection close

REQUEST

REPLY
Server processes request and
prepares reply

Client waiting
for reply

server waiting
for request

14

Server that several requests at
the same time
  Servers need to handle new connections while

replying to the current request
  Servers that handle simultaneously more than one

request are concurrent servers.
  When a new connection is made, the server

acknowledges it and launches a new process to reply
to the new client.

1 process
per

client Client 1

Client 2

  Internet

Server

Server handling several clients
simultaneously

Server

Client Client Client

ServerSocket

Server state shared by
all threads

Each thread
handles a

client using
the socket
returned by

accept

Main thread

Threads handling clients

